Reaction Kinetics

- Simple rate equations describe the progress of first-order and secondorder reactions.
- The Michaelis-Menten equation relates the initial velocity of a reaction to the maximal reaction velocity and the Michaelis constant for a particular enzyme and substrate.
- An enzyme's overall catalytic efficiency is expressed as k_{cat}/K_{M} .
- A Lineweaver-Burk plot can be used to present kinetic data and to calculate values for $K_{\rm M}$ and $V_{\rm max}$.
- Bisubstrate reactions can occur by an Ordered or Random sequential mechanism or by a Ping Pong mechanism.

Reaction Kinetics

- Enzyme kinetics: Study of the rates of enzyme- catalyzed reaction
- What are the uses of studying kinetics?

What we will cover:

- 1. Kinetics
- 2. Inhibition
- 3. Regulation

Plot of First-Order Rate Equation

A ____ ₽

The rate V is 1.quantities of A to disappear in a specified unit of time or 2.quantities of P to appear in a specified unit of time

 $V = -\Delta A/\Delta T = \Delta P/\Delta T$ The rate of the reaction is directly related to the concentration of A by a proportionality constant, k. k = rate constant

V = k[A] Reactions that are directly proportional to the reactant concentration are *first-order reactions*.

When $2A \longrightarrow P$ or $A + B \longrightarrow P$: bimolecular reaction.

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.360

- pseudo 1st order reaction
- zero order reaction

Progress Curve: Simple Enzyme-Catalyzed Reaction

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.365 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk 2019/6/10

Michaelis-Menten Kinetics

$$E + S \xrightarrow[k_{-1}]{k_{-1}} ES \xrightarrow[k_{-2}]{k_{-2}} E + P$$

Three assumptions

1.ES is a necessary intermediate step
2.k₋₂ is negligible due to small [P]
3.Steady state: [ES] is a constant independent on [S] or [P]

Meaning of K_M

There are two forms of the AD: a low K_M mitochondrial form and a high K_M cytoplasmic form. What happen to the susceptible people?

Double-Reciprocal (Lineweaver-Burk) Plot

Enzyme Kinetic Parameters

a measure of catalytic officiency

Enzyme	Substrate	<i>К_М</i> (М)	k _{cat} (s ⁻¹)	$k_{\rm cat}/K_M ({ m M}^{-1}\cdot{ m s}^{-1})$
Acetylcholinesterase	Acetylcholine	9.5 × 10⁻⁵	1.4 × 10⁴	$1.5 imes10^{8}$
Carbonic anhydrase	CO ₂	1.2 × 10 ⁻²	1.0 × 10 ⁶	8.3 × 10 ⁷
	HCÔ₃⁻	2.6 × 10 ⁻²	4.0 × 10⁵	$1.5 imes 10^{7}$
Catalase	H ₂ O ₂	2.5 × 10 ⁻²	1.0×10^{7}	$4.0 imes 10^8$
Chymotrypsin	N-Acetylglycine ethyl ester	4.4 × 10 ⁻¹	5.1 × 10 ⁻²	1.2 × 10 ^{−1}
	N-Acetylvaline ethyl ester	8.8 × 10 ⁻²	1.7 × 10 ^{−1}	1.9
	N-Acetyltyrosine ethyl ester	6.6 × 10 ⁻⁴	1.9 × 10 ²	2.9 × 10⁵
Fumarase	Fumarate	5.0 × 10 ⁻⁶	8.0 × 10 ²	$1.6 imes10^{8}$
	Malate	$2.5 imes 10^{-5}$	9.0 × 10 ²	3.6 × 10 ⁷
Urease	Urea	2.5 × 10 ⁻²	1.0 × 10⁴	4.0 × 10 ⁵

TABLE 12-1 The Values of K_M , $k_{cat'}$ and k_{cat}/K_M for Some Enzymes and Substrates

Vmax: The maximal rate reveals the **turnover number** of an enzyme which is the number of substrate molecules converted into product by **an** enzyme molecule in a unit time when the enzyme is fully saturated with substrate = k_{cat} (= k_2 when the V is maximum)

 $V_{max} = k_{cat} [E]_T$

Q: a 10⁻⁶ M solution of carbonic anhydrase catalyzes the formation of 0.6 M H_2CO_3 per second when the enzyme is fully saturated with substrate. What is the k_{cat} ?

Bisubstrate Reactions

Most biological reactions: A + B P + Q(1) sequential (ordered and random) and (2) ping-pong reaction

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.373 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk 2019/6/10 : Group-transfer reactions in which one or more products are released before all substrates have been added.

F: enzyme temporarily modified with a functional group

ex: aspartate aminotrasferase

Enzyme Inhibition

- Enzyme inhibition is a major control mechanism in biological systems.
- Many drugs and toxic agents act as inhibitors (transition state inhibitors!).
- Enzyme inhibitors interact reversibly or irreversibly (ex: Penicillin and Aspirin) with an enzyme to alter its K_M and/or V_{max} values.
 Among reversible inhibitors belong competitive and uncompetitive inhibitors.
- A competitive inhibitor binds to the enzyme's active site and increases the apparent K_{M} for the reaction.
- An uncompetitive inhibitor binds to ES complex and affects catalytic activity such that both the apparent $K_{\rm M}$ and the apparent $V_{\rm max}$ decrease.
- A noncompetitive inhibitor or mixed inhibitor can bind to free enzymes and reduce the number of available (functional) enzyme: decrease the turnover number. They alters both catalytic activity and substrate binding such that the apparent $V_{\rm max}$ decreases and

Competitive Enzyme Inhibition

- Inhibitors mimic the substrate: compete for the same site.
- The inhibition can be overcome by adding more substrate.
- Often act as drugs: e.g. ibuprofen, Statins

Competitive Enzyme Inhibition

Competitive Enzyme Inhibition

© 2013 John Wiley & Sons, Inc. All rights reserved.

Uncompetitive Enzyme Inhibition

ESI: Enzyme-Substrate-Inhibitor complex: a certain portion of ESI always exists, thus decreases V_{max} - as if some enzymes are kidnapped in ES form! What would happen to K_{M} ?

E + S
$$\xrightarrow{k_1}_{k_{-1}}$$
 ES $\xrightarrow{k_2}_{k_{-2}}$ E + P

$$K_{M} = (k_{-1} + k_{2})/k_{1}$$

Uncompetitive Enzyme Inhibition

Figure 12-9 © 2013 John Wiley & Sons, Inc. All rights reserved.

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.381 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk_2019/6/10

Mixed and Noncompetitive Enzyme Inhibition

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.381 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk 2019/6/10

Mixed and Noncompetitive Enzyme Inhibition

Enzyme Inhibitor Effects

Type of Inhibition	Michaelis-Menten Equation	Lineweaver–Burk Equation	Effect of Inhibitor
None	$v_{\rm o} = \frac{V_{\rm max}[S]}{K_M + [S]}$	$\frac{1}{v_{\rm o}} = \frac{K_M}{V_{\rm max}} \frac{1}{[S]} + \frac{1}{V_{\rm max}}$	None
Competitive	$v_{\rm o} = \frac{V_{\rm max}[S]}{\alpha K_M + [S]}$	$\frac{1}{v_{\rm o}} = \frac{\alpha K_M}{V_{\rm max}} \frac{1}{[S]} + \frac{1}{V_{\rm max}}$	Increases K_M^{app}
Uncompetitive	$\nu_{\rm o} = \frac{V_{\rm max}[S]}{K_{\rm M} + \alpha'[S]} = \frac{(V_{\rm max}/\alpha')[S]}{K_{\rm M}/\alpha' + [S]}$	$\frac{1}{v_{\rm o}} = \frac{K_M}{V_{\rm max}} \frac{1}{[S]} + \frac{\alpha'}{V_{\rm max}}$	Decreases K_{M}^{app} and V_{max}^{app}
Mixed (noncompetitive)	$v_{o} = \frac{V_{max}[S]}{\alpha K_{M} + \alpha'[S]} = \frac{(V_{max}/\alpha')[S]}{(\alpha/\alpha')K_{M} + [S]}$	$\frac{1}{v_{\rm o}} = \frac{\alpha K_M}{V_{\rm max}} \frac{1}{[S]} + \frac{\alpha'}{V_{\rm max}}$	Decreases V_{max}^{app} ; may increase or decrease K_M^{app}
$a' \alpha = 1 + rac{[I]}{K_{\rm I}} {\rm and} \alpha' = 1$	$1 + \frac{[\mathbf{I}]}{K'_{\mathbf{I}}}.$		

TABLE 12-2 Effects of Inhibitors on Michaelis-Menten Reactions^a

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.380 TABLE 12-2 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk 2019/6/10

Control of Enzyme Activity

- Allosteric effectors bind to multisubunit enzymes such as aspartate transcarbamoylase, thereby inducing cooperative conformational changes that alter the enzyme's catalytic activity. (They don't follow MM)
- Phosphorylation and dephosphorylation of an enzyme such as glycogen phosphorylase can control its activity by shifting the equilibrium between more active and less active conformations.

Aspartate Transcarbamoylase Reaction

Pyrimidine Biosynthesis: ATCase Feedback Inhibition

ATCase: T-State vs. R-State

8ATC

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.385 itle bk 2019/6/10

Unreactive Bisubstrate Analog

Unnumbered 12 p379 © 2013 John Wiley & Sons, Inc. All rights reserved. Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.385 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918438/ref=dp_ob_tttle_bk 2019/6/10

ATCase: Conformational Changes

Unnumbered 12 p381 © 2013 John Wiley & Sons, Inc. All rights reserved.
Datal Voet&Charlotte W. Prat (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.387 https://www.amazon.co.jo/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref-dp_ob_ttle_bk 2019/6/10

Rabbit Muscle Glycogen Phosphorylase

Figure 12-15 X-Ray structure coordinates courtesy of Stephen Sprang, University of Texas Southwest Medical Center Donal VeskJudi G. VeskJudi A. Vesk (2016), Fundamentals of biochemistry, binder ready vesion life at the molecular level Wiley pp.388 https://www.amacco.gfurdamentals.foodmails.foodm

Conformational Changes: Glycogen Phosphorylase

Figure 12-16 © 2013 John Wiley & Sons, Inc. All rights reserved.

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.389 https://www.amazon.co.in/Fundamentals-Biochemistry-Binder-Ready-Version/do/1118918436/ref-do_ob_title_bk.2019/6/10 Glycogen phosphorylase PDBids <u>8GPB</u> and <u>7GPB</u>

Glycogen Phosphorylase: Control by Phosphorylation

© 2013 John Wiley & Sons, Inc. All rights reserved. Donal Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.390 https://www.amacon.co.ip/fundamentals=Biochemistry-Binder-Ready-Version/dp/11891436/ref=dp.ob. title_bk.2019/6/10